
Using Test Cases to Size Systems
A Case Study

Adam Schwartz
Trueleandevelopment.com

Holden, MA, USA
aschwartz@trueleandevelopment.com

Abstract— Productivity, quality and speed are the three key
areas that all technology organizations strive to understand.
Yet despite the keen interest, the ability to quantitatively
measure these aspects of performance often eludes us. Central
to the issue is that software development varies significantly in
size from project to project making comparisons challenging.

Measurement of the size of software is a key component to
comparing dissimilar projects. Without a means to normalize
for size, drawing conclusions between projects is a nearly
impossible task. While solutions have existed to size systems in
both lines of code (KLOC) and function points (FP), this paper
explores a successful alternative approach to sizing that
exhibits the benefits of existing methods with less incentive to
manipulate the measurement system and a significantly lower
cost. This paper proposes that the number of test cases is a
viable measure of system size, available early in the process.

Keywords-defects, metrics, software sizing, test cases,
function points.

I. INTRODUCTION
The desire to size a system in order to make comparisons

between projects has long been a topic of vigorous
discussion. Some have proposed that due to challenges with
our existing sizing measurements, it would be worthwhile to
avoid the question altogether [1].

IBM started their measurement of system size using
KLOC. To compensate for differences between
programming languages, IBM developed a technique to
normalize the size of the system by translating higher level
languages to assembly equivalent lines of code [2, pp. 77].
Eventually, function points evolved to compensate for issues
associated with KLOC measurements [3], although not
without criticisms of their own, particularly surrounding the
more subjective elements of the counting process [4] [5] [6].
Today, the International Function Point Users Group
(IFPUG) offers a standard method for sizing systems via the
use of function points.

Like many organizations, the large company in this study
(hereafter, XCorp) was exploring methods to look at quality
trends within their development organizations as well as
between development organizations. Parameters for that
exploration were set as follows:

• The measurement had to be self-contained.
• The measurement had to be self-sustaining.
• The measurement had to be language/technology

neutral.

A measurement that required many organizations to

calculate would lack sustainability. Having a single
organization which is capable of the collection and reporting
of quality data assured one point of responsibility existed to
make the measurement a reality. If the measurement had to
be negotiated across many silos, the odds of failing to
achieve an agreement would have increased.

Although measurement is a critical component to proving
a process improvement has occurred, XCorp recognized that
measurement itself does not directly add value to their
customers. Therefore, any measurement system requiring
significant human intervention would lack sustainability as
well. As the organization continued to grow, a measurement
that required manual data collection would fall by the
wayside in favor of “value-added” work.

Lastly, XCorp uses a wide range of languages and
technologies throughout the organization. Any measurement
created should result in the ability to compare across parts of
the organization.

II. LIMITATIONS OF EXISTING MEASUREMENTS
KLOC has been much derided for the ease of which

developers can artificially manipulate this measurement.
When used to create metrics such as cost per KLOC
delivered, a productivity metric, developers can improve the
appearance of efficiency by actually being less effective with
their code. They simply need to write more lines of code in
order to increase the denominator.

In addition, KLOC measurements only allow
productivity measures of the development phase. The use of
KLOC as a productivity measure suffers when you consider
the relatively fixed costs of requirements or design. Higher
level languages reduce the proportion of lines of code
produced compared to other non-coding work, generating the
appearance of severely reduced productivity [2, pp. 57-58].

The significant advantage of KLOC is that the
measurement is a free byproduct of development. Tools are
readily available which can count the amount of source code
delivered although some languages, such as SQL, may not be
adequately covered. This has some appealing characteristics,

2012 Ninth International Conference on Information Technology- New Generations

978-0-7695-4654-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ITNG.2012.41

242

2012 Ninth International Conference on Information Technology - New Generations

978-0-7695-4654-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ITNG.2012.41

242

since having to put in place a separate measurement system
to watch over the work adds clearly non-value-added work to
the organization.

Proponents of function point counting argue that FP
measures something fundamentally different from KLOC –
the size of the problem as opposed to the size of the solution.
It is this differentiation that gets at the heart of one of the key
issues with sizing systems using KLOC. Natural variations
in solution design and/or efforts to deliberately deceive the
measurement system make KLOC undesirable. An
independent appraisal of how much has been delivered is
needed.

Function points appear to overcome many of the
challenges of the KLOC measure, but not without costs. In
order to implement a function point program, training and
maintaining resources to effectively count the function points
is necessary.

III. RELATED WORK
In addition to the familiar FP and KLOC options, related

methods exist to compensate for shortcomings perceived.
Options exist that are structurally similar to FP counting,
such as Mark II FP [7], Demarco’s BANG Metric [8], and
SPQR/20 [9].

Other methods approach the sizing problem by seeking to
appropriately classify complexity of software systems [10],
leveraging techniques such as functional decomposition [11],
and identifying alternative proxies for the system size, such
as UML diagrams [12]. Lastly, methods exist specific to a
problem domain, such as for web-based development [13],
and object oriented development [14].

IV. AN ALTERNATIVE METHOD
Gack has proposed that much of the value of function

points can be derived without much of the cost. His proposal
for “FP Lite” realizes 80% of the accuracy for a fraction of
the cost [15]. This greatly reduced cost is far more appealing
than full function point counting costs, but still represents a
non-value-added effort.

Recognizing the challenges with the existing
measurement systems available, XCorp set out looking for a
measurement which would achieve the low cost of KLOC
with the improved independence of function points. The
goal was to find a measurement mechanism which was a
natural byproduct of their development process rather than
an add-on measurement.

Not all companies employ an independent quality
assurance organization, but the shift has been towards it.
Gartner Group found that from 2002-2006 the investment in
formal system testing increased from 10% of project spend
to 25% of project spend [16].

XCorp’s Quality Assurance team approaches testing by
attempting to achieve functional coverage against the
features delivered. As a result, the process begins with the
user’s requirements. These requirements are converted into
a set of scenarios. Scenarios break down the requirements
into component parts to test both the should-do and should-
not-do parts of the requirement. From there, the scenarios

are further divided into test cases to explore both nominal
and edge cases.

In essence, the transformation of requirements into test
cases breaks down and normalizes the work into uniformly
sized chunks. The goal of achieving complete coverage over
the requirements assures that every part of the system is
being assessed.

Recently, XCorp has made a move towards risk-based
testing, which assesses the business value, technical
complexity and test complexity of each scenario. This
process minimizes the effort of writing cases against low-
value, low-risk code. However, it still requires that the
necessary scenarios and cases be recognized before they can
be scored. If low scoring, there is no need to flesh out the
test case into a series of steps, but this process still provides
an adequate method of assessing how much functionality
was theoretically delivered, whether the functionality is
formally tested or not.

Because of the process undertaken, we believed that the
use of test cases as a proxy for the size of the system would
be valid.

Examination of this hypothesis was done through looking
at whether planned test cases would actually act as a
measurement of opportunity. We approached the issue
through consideration of what an increased opportunity
ought to mean. The belief was that the more functionality
that was delivered, all things being equal in the process, the
more defects the process ought to experience.

Analysis used a sample of approximately 1200 projects
during 2007, 2008 and 2009 for which XCorp had recorded
both the number of test cases and the defects. Using the
sample, we compared the relationship between test cases and
defects. The relationship between test cases and defects was
a moderately-strong relationship with a Pearson Correlation
Coefficient of .690 (p = 0.012). Given that many human
aspects enter into this counting system - such as differences
between individuals writing tests, varying means to
decompose requirements into scenarios and cases, and so on,
these are satisfying results from the Pearson Correlation. In
addition we have provided the results of the Spearman’s rank
correlation coefficient since the data exhibit some outliers
that can adversely affect the Pearson Correlation calculation
(Table I). Both measures show a strong relationship between
the proposed independent and dependent variables.

One might be inclined to argue that the relationship
between defects and test cases must necessarily exist, since if
you do not execute a test case you cannot find a defect. It is
true that without exercising the code one cannot find a
defect, but the inverse need not be true. That is, running a
test case does not necessitate that you find a defect. The
existence of the correlation indicates that while you are
likely to find more defects when running more test cases, the
possibility exists that one may run thousands of test cases
and find effectively nothing – as exhibited in a number of
outliers between 1,000 and 10,000 test cases executed.

243243

TABLE I. CORRELATION COEFFICIENT OF TEST DEFECTS VS. TEST
CASES

Test Pearson
Correlation

p-value Spearman
Rank

Correlation
Defects v. Test
Cases

0.690 0.012 0.671

Total Defects vs. Test Cases

1

10

100

1000

10000

100000

1 10 100 1000 10000

Test Cases

De
fe

ct
s

Figure 1. Defects v. Test Cases (log transformed)

In addition, although XCorp does not regularly tie
production defects back to the projects that injected them, we
were able to conduct a small study to ascertain whether the
relationship between test cases and defects extended beyond
the test phase (Table II) The risk inherent with a
measurement system that uses the test cases is that
inconsistencies in test capabilities could lead to an
inconsistent measurement system – in effect, are we
measuring the size of the system or simply the capability of
the test organization? Evidence that the relationship between
test cases and defects continues to hold when test capability
is removed from the equation supports the assertion that test
cases, when created in a consistent manner, represent a proxy
for the size of the system.

We see in the scatter plot (Figure 1), that the relationship
between test cases and defects appears heteroscedastic.
However, one should note that both axes have been log
transformed to expose the data, and the apparent diminishing
variance as test cases increases is an illusion of the scale. In
fact, this convergent pattern is what one would expect to see
if homoscedastic data were displayed on a log scale.
However, we also observe another interesting characteristic
to the data – the relationship between test cases and defects
appears to potentially be non-linear, as there appears to be
some curvature in the data, likely indicating that there are
diminishing returns from excessive testing.

This result would be the expectation for a measurement
which acted as a good proxy for the opportunity for a defect
– it must show that increasing the opportunity results in
increases in defects. As in manufacturing, the opportunity
for a defect is a proxy for how much has been delivered. If
you delivered more vehicles off the assembly line, there are
more opportunities for a defective vehicle. In software, this
opportunity, and therefore the size of system would
otherwise have been measured by KLOC or FP.

We recognize that all test cases are not equal. In
XCorp’s experience, the number of test case steps in a test is

heavily right skewed, although the median number of steps is
approximately 7. Furthermore, since XCorp is evaluating
the number of defects or against a set of test cases, the law of
large numbers allows the number of steps to regress to the
mean and size variation case-to-case becomes a non-issue.

V. PREDICTIVE CAPABILITY OF THE MEASURE
In order to provide value to the organization, a

measurement system like this must assist in activities such as
predicting how many defects we are likely to detect.
Although a strong positive correlation exists between the
variables, there is significant variance around the mean
which requires explanation in order to achieve value.

Based on this data set, we collected several additional
factors which we hypothesized would explain the variance.
These factors were:

• Use of unit testing prior to formal integration test
• Missing interim project deadlines
• Accepting change controls on the project
• Meeting entrance criteria to formal integration test
The first three of these factors showed evidence of

statistical significance (Table III), while meeting entrance
criteria did not. Unsurprisingly, by the time software reaches
formal test, the quality of the code is already determined, and
therefore meeting entrance criteria that assures the
organization is ready to test does not influence quality.

Not only is the measurement capable of detecting a
difference in the defect densities between the two
populations, but the experienced difference in capability
aligns with the industry experience on the effectiveness of
traditional types of testing – averaging 30-35% defect
removal [17]. This indicates that our measurement for
opportunity produces results which align with industry
findings about differences in defect density using KLOC or
FP as the opportunity measure. The result suggests that the
measurement system is measuring something akin to what
KLOC or FP was doing, and acting in the traditional sense of
what engineers would mean size of system.

TABLE II. CORRELATION COEFFICIENT OF ALL DEFECTS (TEST AND
PRODUCTION) VS. TEST CASES

Test Pearson
Correlation

p-value Spearman
Rank

Correlation
Defects (test
and production)
v. Test Cases

0.677 0.004 0.753

244244

TABLE III. MANN-WHITNEY TEST COMPARING DEFECT DENSITY OF
PROJECTS AGAINST VARIOUS FACTORS.

Group N Median P-Value
Unit Testing

No unit testing 162 0.4672 p < 0.05
Had unit testing 68 0.3428

Missed Deadlines
Did not miss
deadline

51 0.2574 p < 0.05

Missed deadline 360 0.5362
Change Controls

Change controls 48 0.5545 p < 0.05
No change
controls

145 0.3000

Met Test Entrance Criteria
Met criteria 125 0.3737 p = 0.4977
Did not meet
Criteria

99 0.4949

With potential additional explanatory factors in hand, we

can construct a linear regression model (Figure 2) which can
be subsequently used by XCorp’s teams to predict defect
densities prior to any testing occurring.

Note, that optimizing the regression equation required
log transformation of the non-normal data elements (defects
and test cases) prior to use in the equation. In addition, we
identified an interaction effect between missed milestones
and change controls. Although when considered
independently both variables seem to predict higher defect
densities, early regression models indicated missed
milestones was unnecessary. However, the model was
greatly improved by including an interaction effect. Overall,
the model shows decent predictive capability for the
organization; additional explanatory variables would likely
improve the r-squared further.

VI. ADDITIONAL ADVANTAGES
Like FPs’ early availability in the project, the majority of

functional test cases can be created early in the process as
well – effectively in parallel with requirements. As a result,
the use of test cases as a measure of system size can be
extended for use in the size of analysis, design and coding
phases of the project as well.

Initial measures of size-of-system would be coarser than
later measures. It often isn’t until the organization reaches
testing that the entire suite of test cases is fully known –
some cases are written specific to the final design or coding
nuances of the delivered system. This refinement should be
incremental.

VII. EXTENDING THE MEASURE
Once a measure of opportunity, or size of system, is

created the extension to many other metrics is a trivial
activity.

log(total defects) = -0.133 + 0.624 log(test cases) –
0.287 documented_ut + 0.166 change_controls + 0.279
change_controls_and_missed_milestones (CC & MM)
Predictor Coef SE

Coef
T P VIF

Constant -0.133 0.083 -1.6 0.111
log(test cases) 0.624 0.034 18.22 0.000 1.275
Documented_ut -0.287 0.050 -5.71 0.000 1.137
Change_controls 0.166 0.080 2.06 0.040 2.038
CC & MM 0.279 0.101 2.76 0.006 1.971

R Sq(adj) = 60.8%
R Sq(pred) = 60.12%

Figure 2. Regression Equation for Defect Prediction

Development productivity is simply development effort /
test cases. Such a measure would have to exclude Quality
Assurance to avoid encouraging the QA teams from
artificially inflating the number of test cases created. Similar
measures of requirements productivity, design productivity,
etc. can be created.

Once a healthy baseline of data are established, the data
could be leveraged for estimating future projects.
McConnell notes that methods such as extrapolating
potential time and cost based on simple extrapolation can be
powerful estimating tools [18].

Development speed would be measured as development
duration / test case. It would be possible to also calculate
design duration / test case and similar measures against each
phase of the project for estimating future project durations in
addition to costs.

VIII. CONCLUSION
Because of the nature of XCorp’s quality assurance

process, the use of test cases as a proxy for size of system
appears to be valid. Challenges with such a method would
arise if the test organization was not acting as an independent
appraiser of quality. Were development in control of the
number of test cases needed to appraise the system, it would
be a trivial effort to increase the number of cases beyond
what is reasonably needed to assess functionality, thus
artificially increasing the denominator and reintroducing the
problems created by LOC calculations.

However, XCorp’s Quality Assurance organization is not
motivated by the need to do so. In practice, XCorp does not
assess QA’s efficiency as the cost of testing divided by the
number of test cases. Instead, quality assurance’s efficiency
is measured on the cost per defect detected. While such a
measure is described by Jones as being economically
perverse [2, pp. 376-378], XCorp believes it is appropriate to
evaluate the appraisal organization (and only the appraisal
organization) in this fashion. By doing so, they encourage
QA to create no more test cases than necessary to assess the
system completely and instead reward these teams for the
efficient discovery of defects. Assessing QA independently
of the rest of the development organization creates the
necessary tension between the teams and their metrics to
assure using the proposed method of system sizing is an
effective measurement.

245245

REFERENCES
[1] Gack, G. “Cost of quality: a key effectiveness metric for software

and IT.’ Process Fusion. 2007. Available at: http://process-
fusion.net/pdfs/Cost%20of%20Quality%20-
%20a%20Key%20Effectiveness%20Metric%20for%20Software%20
and%20IT%2020090417.pdf

[2] Jones, C. Applied Software Measurement. New York: McGraw-
Hill, 1996.

[3] Albrecht, A.J. “Measuring application development productivity.”
Proceedings of the Joint SHARE, GUIDE, and IBM Application
Development Symposium, Monterey, California, October 14–17,
IBM Corporation (1979), pp. 83–92.

[4] Symons, C.R. “Function point analysis: difficulties and
improvements.” IEEE Transactions on Software Engineering. Jan
1988. pp. 2-111.

[5] Hemmstra, F. and Kusters R. “Function point analysis: evaluation of
a software cost estimation model.” European Journal of Information
Systems. 1991. Vol 1, No 4. pp 229-237.

[6] Jeffery, R and Stathis, J. “Specification-based software sizing: An
empirical investigation of function metrics.” Proceedings of the
Eighteenth Annual Software Engineering Workshop. 1993. p 97-115.

[7] Symons, C. Software sizing and estimating: Mk II FPA (Function
Point Analysis). John Wiley & Sons, Inc. New York, NY, USA
©1991

[8] Demarco, T. “An algorithm for sizing software products.” ACM
Sigmetrics Performance Evaluation Review. 1984. Volume 12, Issue
2. pp 13-22.

[9] Jeffrey, D.R, Low, G.C. and Barnes, M. “A comparison of function
point counting techniques.” IEEE Transactions on Software
Engineering. 1993. Volume 19, Issue 5. pp 529-532..

[10] Hastings, T.E. and Sajeev, A.S.M. “A vector-based approach to
software size measurement and effort estimation.” IEEE
Transactions on Software Engineering. 2001. Volume 27, Issue 4.
pp 337-350.

[11] Verner, J. and Tate, G. “A software size model.” IEEE Transactions
on Software Engineering. 1992. Volume 18, Issue 4. pp 265-278.

[12] Živkovi� A., Rozman I,, & Heri�ko M. “Automated software size
estimation based on function points using UML models.”
Information and Software Technology. Volume 47, Issue 13. 2005.
pp 881-890.

[13] Ruhe, M. Jeffery, R, & Wieczorek, I. “Using Web objects for
estimating software development effort for Web applications.”
Proceedings of the Ninth International Symposium on Software
Metrics. 2003. pp 30-37.

[14] Laranjeira, L.A. “Software size estiamtion of object-oriented
systems.” IEEE Transactions on Software Engineering. 1990.
Volume 16, Issue 5. pp 510-522.

[15] Gack, G. “A blast from the past - scoping and estimating with
context diagrams.” Process Fusion. June 2009. Available at:
http://process-fusion.blogspot.com/2009/06/blast-from-past-scoping-
and-estimating.html

[16] Gartner Consulting Worldwide IT Benchmark Service.
[17] Jones, C. “Measuring defect potentials and defect removal

efficiency.” STSC Crosstalk. 2008. Available at:
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html

[18] McConnell, S. Software Estimation: Demystifying the Black Art.
Washington: Microsoft Press, 2006.

246246

